
Fuel Cell Characteristics

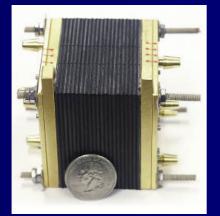
Fuel Cells Characteristics

	Fuel Cell	Electrolyte	Operating Temperature (°C)	Electrochemical Reactions
いたという	Polymer Electrolyte/ Membrane (PEM)	Solid organic polymer poly-perfluorosulfonic acid	60 - 100	Anode: $H_2 \rightarrow 2H^+ + 2e^-$ Cathode: $1/2 O_2 + 2H^+ + 2e^- \rightarrow H_2 O$ Cell: $H_2 + 1/2 O_2 \rightarrow H_2 O$
	Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90 - 100	Anode: $H_2 + 2(0H)^{\cdot} \rightarrow 2H_20 + 2e^{\cdot}$ Cathode: $1/2 O_2 + H_2 O + 2e^{\cdot} \rightarrow 2(0H)^{\cdot}$ Cell: $H_2 + 1/2 O_2 \rightarrow H_2 O$
	Phosphoric Acid (PAFC)	Liquid phosphoric acid soaked in a matrix	175 - 200	Anode: $H_2 \rightarrow 2H^+ + 2e^-$ Cathode: $1/2 O_2 + 2H^+ + 2e^- \rightarrow H_2 O$ Cell: $H_2 + 1/2 O_2 \rightarrow H_2 O$
	Molten Carbonate (MCFC)	Liquid solution of lithium, sodium and/ or potassium carbon- ates, soaked in a matrix	600 - 1000	Anode: $H_2 + CO_3^{2*} \rightarrow H_2O + CO_2 + 2e^2$ Cathode: $1/2 O_2 + CO_2 + 2e^2 \rightarrow CO_3^{2*}$ Cell: $H_2 + 1/2 O_2 + CO_2 \rightarrow H_2O + CO_2$ (CO ₂ is consumed at cathode and produced at anode)
	Solid Oxide (SOFC)	Solid zirconium oxide to which a small amount of ytrria is added	600 - 1000	Anode: $H_2 + 0^{2\cdot} \rightarrow H_2 0 + 2e^{\cdot}$ Cathode: $1/2 0_2 + 2e^{\cdot} \rightarrow 0^{2} \cdot$ Cell: $H_2 + 1/2 0_2 \rightarrow H_2 0$

Comparison of Fuel Cell Technologies

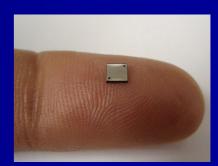
Fuel Cell	Applications	Advantages	Disadvantages
Polymer Electrolyte/ Membrane (PEM)	electric utility portable power transportation	 Solid electrolyte reduces corrosion & management problems Low temperature Quick start-up 	 Low temperature requires expensive catalysts High sensitivity to fuel impurities
Alkaline (AFC)	military space	 Cathode reaction faster in alkaline electrolyte — so high performance 	 Expensive removal of CO₂ from fuel and air streams required
Phosphoric Acid (PAFC)	electric utility transportation	 Up to 85 % efficiency in co-generation of electricity and heat Impure H₂ as fuel 	 Pt catalyst Low current and power Large size/weight
Molten Carbonate (MCFC)	electric utility	 High temperature advantages* 	 High temperature enhances corrosion and breakdown of cell components
		"High temperature advantages include higher efficiency, and the flexibility to use more types of fuels and inexpensive catalysts a reactions involving breaking of carbon to carbon bonds in larger hydrocarbon fuels occur much faster as the temperature is increa	
Solid Oxide (SOFC)	electric utility	 High temperature advantages* Solid electrolyte advantages (see PEM) 	 High temperature enhances breakdown of cell components
777			

Fuels For Fuel Cell


- Hydrogen
- Methanol
- Natural gas
- Propane
- Gasoline
- Other liquid hydrocarbons
 - desulfurized gasoline
 - hydrocrackate
 - alkylate/isomerate
 - gas-to-liquid light paraffin
 - hydrotreated condensate

Reformer

Applications


Small appliances Power packs – Material Handling - Auxiliary Power Units Aviation Ground Support Equipment Fuel cell vehicles (FCVs) Power generations (Plants)

Sizes to fit applications

http://newtech.aurum3.com/images/worlds-smallest-fuel-cell.jp

Small Applications

Battery replacement

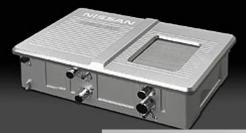
- Cell phones, laptops, mp3
- Powering medical

ource: http://blog.megapixel.net/blog/2008/05/09/050908_methanol_fc.jpg

Power Pack Applications

ource: http://blog.megapixel.net/blog/2008/05/09/050908_methanol_fc.jpg

Back-up unitMaterial handling

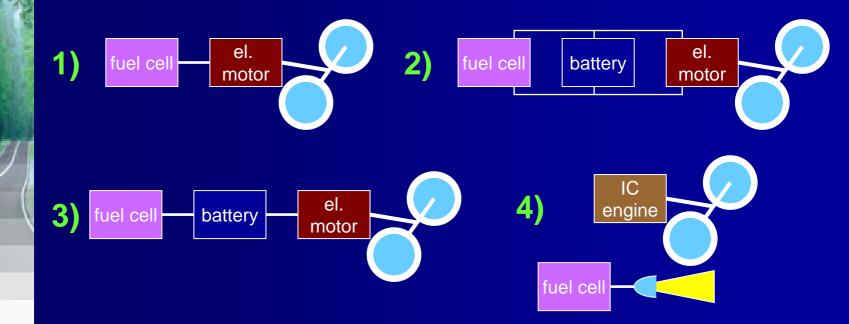


Fuel Cell Vehicles (FCVs)

lowered by

Why PEMFC for FCVs?

Simple


- Quick start-up
- Fast response
- High efficiency
- High power density (kW/kg and kW/l)
- Zero emissions

System Configurations of Fuel Cell Vehicles

Fuel cell provides all the power
 Fuel cell provides nominal power

 battery provides peak power (parallel hybrid)

 Fuel cell charges the batteries (series hybrid)
 Fuel cell as an auxiliary power unit

Configurations of FCVs

Direct hydrogen fuel cell system
Direct methanol fuel cell system
Fuel cell system with a reformer

<u>Fuel</u>

- Compressed hydrogen
- Liquid hydrogen
- Hydrogen in metal hydrides
- Hydrogen in chemical hydrides
- Ammonia
- Methanol
- Gasoline
- Other

Some of FCVs

Sample of FCV (Nissan)

1. Fuel Cell Stack Developed by Nissan

Sample of FCV (Nissan)

2. Specifications

			2005 Model	2003 Mode
Vehicle	Overall length/width /height (mm)		4485/1770/1745	4485/1771/1800
	Weight	(kg)	1790(1860)	1960
	Seating capacity	(people)	5	+
	Top speed	(km/h)	150	145
	Cruising range	(km)	Over 370 (over 500)	Over 350
Motor	lotor Type		Coaxial motor integrated with reduction gear	←
	Max, power	(kW)	90	85
	Max, torque	(N·m)	280	←
uel cell stack Fuel cell			Solid polymer type	+
	Max, power	(kW)	90	63
	Supplier		Developed by Nissan	UTC Fuel Cells (USA)
Rechargeab l Battery	е Туре		Compact lithium-ion battery	4
Fueling syste	ueling system Fuel type		Compressed hydrogen gas	←
	Max, pressure	(MPa)	35(70)	35

Hydrogen Refueling Infrastructure

Power Generation Applications

PEMFCSOFCMCFCPAFC

ource: http://blog.megapixel.net/blog/2008/05/09/050908_methanol_fc.jpg

Fuel Cell System Requirements (Depend on application)

	Automotive	Primary Power	Back-up Power
Power	50-100 kW	1-10 & >200 kW	1-10 kW
Fuel	Reformate/H ₂	Reformate	Hydrogen
Life	5,000 hrs	>40,000 hrs	<2,000 hrs
High Efficiency	Critical	Critical	Not Critical
Instant Start	Very Important	Not Important	Very Important
Output Mode	Variable	Variable	Constant
Operation	Intermittent	Constant	Intermittent
Preferred Voltage	>300 V	>110 V AC	48 V DC
Heat Recovery	Not Needed	Very Important	Not Needed
Water Balance	Very Important	Very Important	Not Critical
Size and Weight	Critical	Not Critical	Not Critical
Extreme Conditions	Critical	Not Critical	Important
Cost	<\$100/kW	<\$1000/kW	<\$1000/kW
	<\$50/kW	<\$200/kW	<\$400/kW

Barriers To Commercialization

Fuel infrastructure

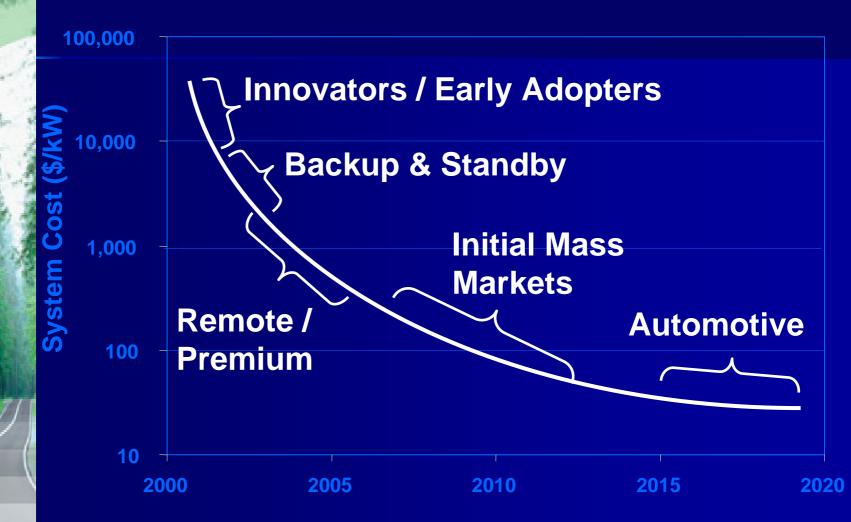
- High cost
 - More expensive than competing technologies
 - Actual price depends on production numbers
- Insufficient durability
- Performance issues
 - Lifetime lower than competing technology
 - Need research on lifetime issues, performance is good

R & D Needs

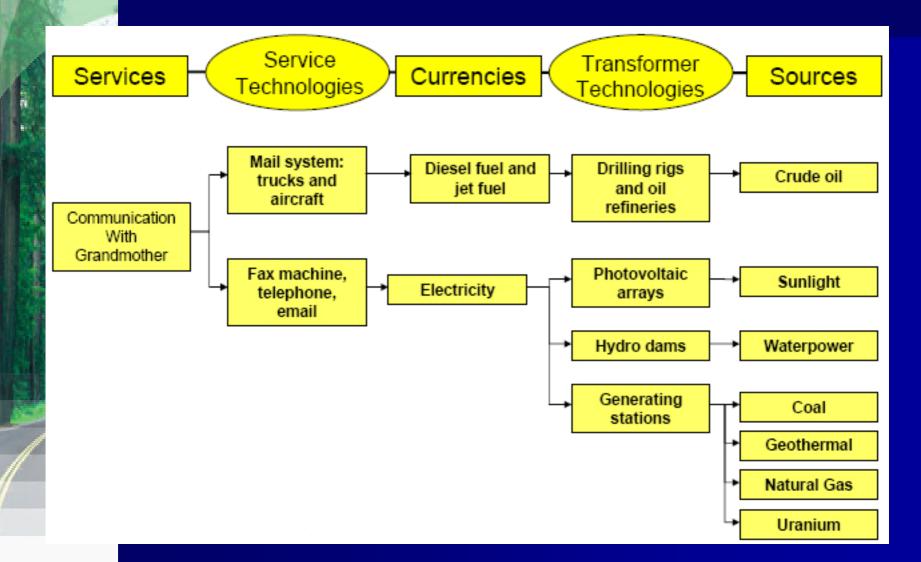
Better performance

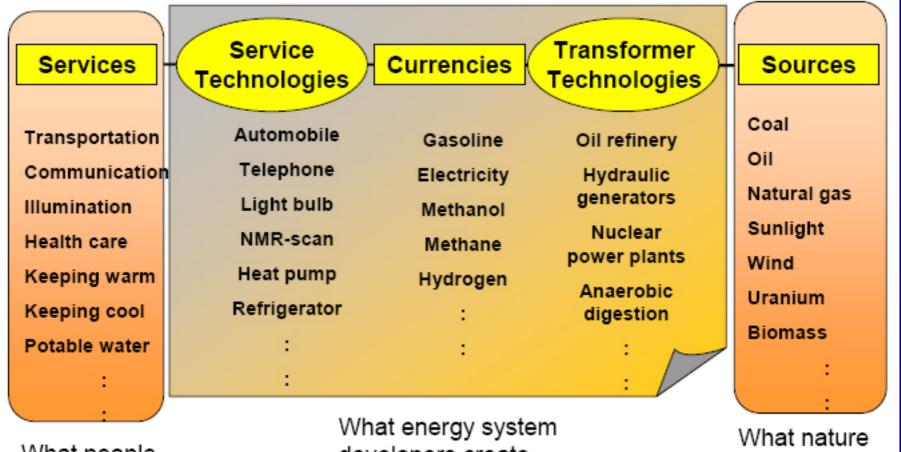
 higher voltage, better stability, transients, start-up, survivability

Susceptibility to contaminants


Lower cost

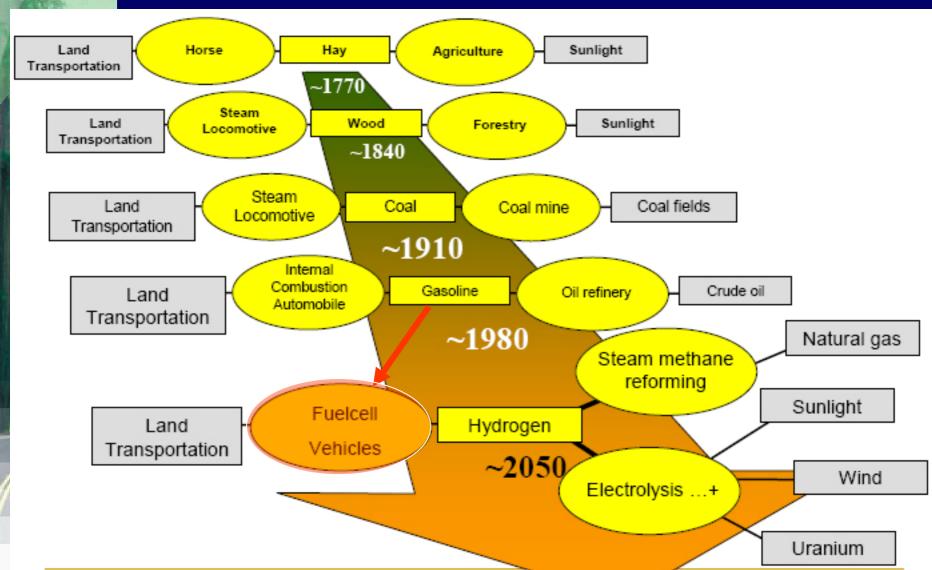
- materials, manufacturing processes, manufacturing scale
- simpler systems
- Longer life/durability
- Hydrogen/fuels infrastructure
 - hydrogen production, storage, transport, distribution
 - technical and socio-economic issues


Some Players (PEMFCs)


Company	City	Province	Applications		
Aluminum Power	Toronto	Ontario	Mobile		
Angstrom Power	North Vancouver	British Columbia	Portable		
Astris Energi	Mississauga	Ontario	Mobile		
Ballard Power Systems	Burnaby	British Columbia	Stationary; Portable; Mobile		
Cellex Power Products	Richmond	British Columbia	Stationary		
DuPont Canada	Kingston	Ontario	Stationary; Portable; Mobile		
Energy Visions	Mississauga/Calgary	Ontario / Alberta	Stationary; Portable; Mobile		
Fuel Cell Technologies	Kingston	Ontario	Stationary		
Global Thermoelectric	Calgary	Alberta	Stationary; Mobile		
GreenVOLT Power	Orillia	Ontario	Stationary		
Hydrogenics	Mississauga	Ontario	Stationary; Portable; Mobile		
Kinectrics	Toronto	Ontario	Stationary		
MagPower Systems	Delta	British Columbia	Stationary; Portable		
Palcan Fuel Cells	Burnaby	British Columbia	Portable; Mobile		
PEM Technologies	Vancouver	British Columbia	Portable; Mobile		
PowerDisc Development	Chilliwack	British Columbia	Mobile		
Siemens Canada	Mississauga	Ontario	Stationary; Portable		

CURRENT STATE OF THE TECHNOLOGY (Cost projection)

- World energy crisis
- Energy system
- Hydrogen economy
- (Local) Environmental friendly technology
- Promise of high efficiency
- No moving parts/promise of long life
- Modular
- Quiet
- Simple/promise of low cost)



What people want...

developers create

provides

Clean Energy Systems Research Group (CES)

School of Energy Environment and Materials King Mongkut's University of Technology Thonburi 126 Pracha-Utis Road Thungkru Bangkok 10140 Phone: (02) 470-8626 Fax: (02) 427-9062 (www.ces.kmutt.ac.th)